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1
CHANNEL INTEGRITY DETECTION

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application No. 61/644,746, filed May 9, 2012 and
entitled Automatic Bad Channel Detection, which is incor-
porated herein by reference in its entirety.

TECHNICAL FIELD

This disclosure relates to channel integrity detection.

BACKGROUND

In some examples, body surface electrical activity (e.g.,
ECG signals) can be sensed by an arrangement of electrodes.
The sensed signals can be processed for a variety of appli-
cations, such as for body surface mapping or electrocardio-
graphic mapping. Since these and other processing methods
can depend on body surface potential data, the quality of
data for each input channel can affect the quality of the
output results based on signal processing. In some types of
signal processing, the signal processing can be very sensi-
tive to anomalies in the input channels. For instance, sig-
nificant noise, such as line noise or large changes in ampli-
tude, or other variations in the input channels could produce
inaccurate results as well as overshadow the important
physiological information. This could render the resulting
outputs computed from such input channels non-diagnostic
or uninterpretable.

SUMMARY

This disclosure relates to channel integrity detection, such
as to mitigate undesirable effects of noisy input channels on
further processing and analysis.

In one example, the channel integrity detection can be
implemented as a non-transitory computer readable medium
having instructions. The instructions can include a prepro-
cessing stage to analyze input channel data for a plurality of
input channels to detect channels having an integrity that is
considered one of bad or good, each of the plurality of input
channels corresponding to a respective one of a plurality of
nodes. A first spatial similarity measurement function can
compute a measure of similarity between the input channel
data for each of the plurality of nodes and a set of neigh-
boring nodes to identify a spatial correlated set of channels
having an integrity that is considered one of bad or good. An
amplitude analyzer function can determine a subset of
channels meeting amplitude criteria. A second spatial simi-
larity measurement function can compute, for each channel
in the subset of channels meeting the amplitude criteria, a
measure of similarity between the input channel data for
each node and a set of neighboring nodes to identify an
amplitude correlated set of channels having an integrity that
is considered one of bad or good. A combiner can store
output data representing the integrity of plurality of input
channels based on the channels detected by the preprocess-
ing stage, the channels identified by the spatial correlated set
of channels and the channels identified by the amplitude
correlated set of channels.

In another example, a computer-implemented method can
include determining an amplitude for each of a plurality of
input channels, corresponding to respective nodes. A mea-
sure of similarity can be computed between the input

10

15

20

25

30

35

40

45

50

55

60

65

2

channel of each node and the input channel of its neighbor-
ing nodes. The method can also include comparing an
amplitude for each node relative to other nodes to determine
temporary bad channels. For each of the temporary bad
channels, a measure of similarity can be computed between
the input channel of each node and the input channel of its
neighboring nodes. Channel integrity can then be identified
based on the computed measures of similarity.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an example of a channel integrity detection
system.

FIG. 2 depicts another example of a channel integrity
detection system.

FIG. 3 depicts an example of an electrophysiological
mapping system that can implement channel integrity detec-
tion.

FIG. 4 depicts an example of a graphical user interface
demonstrating examples of high amplitude signals that can
be identified via channel integrity detection.

FIG. 5 depicts an example of another graphical user
interface demonstrating examples of low spatially correlated
signals that can be identified via channel integrity detection.

FIG. 6 depicts a graphical representation of sensing nodes
that can be distributed across a patient’s body surface.

FIG. 7 depicts an enlarged view of a part of the nodes of
FIG. 6 demonstrating a mesh configuration.

FIG. 8A depicts a representation of a node mesh structure
demonstrating a central node surrounded by a set of local
neighboring nodes.

FIG. 8B is an enlarged view of part of the mesh structure
of FIG. 8A further demonstrating the central node and its
local neighboring nodes.

FIG. 9 depicts an example of a graphical user interface
demonstrating additional signals that have been selected, a
display of channel integrity as well as an example map that
can be generated based on the signals detected by the
sensing nodes.

FIG. 10 depicts another example of a graphical user
interface demonstrating examples of channel signals, sens-
ing node integrity and a resulting map that can be generated
based on the input signals detected by the sensing nodes.

DETAILED DESCRIPTION

This disclosure relates to an apparatus, system or method
that can determine channel integrity for a plurality of input
channels. Each of the input channels can carry sensed
electrical signals, such as electrophysiological signals from
a patient. The sensed electrical signals for the respective
channels can provide input channel data. In some examples,
the approach disclosed herein can detect channels that may
be detrimental to further signal processing sensitive to
anomalous signals, such as line noise, large changes in
amplitude or other variations in the input channels. The
channel integrity detection disclosed herein thus enables
detection and removal of channels determined to adversely
affect such computations. In some examples, the detection
and removal can be fully automated or semi-automated.

The channel integrity detection can perform pre-process-
ing on the input channel data to identify certain types of
faults or invalid channels, such as can include detecting
disconnected sensing electrodes (e.g., saturated input chan-
nels), or other amplitude ranges (e.g., low and high ampli-
tude ranges) that might adversely affect the signal process-
ing. Additionally processing can be performed to compute a
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measure of spatial similarity (e.g., correlation) between the
signals for a given node and its respective neighboring
nodes. Signal channels having a low spatial correlation or
otherwise uncorrelated relative to their respective neighbors
can be identified as low integrity channels (e.g., also referred
to herein as “bad channels™), and thus can be removed from
further signal processing and analysis. Additional amplitude
analysis can be performed for additional channel integrity
detection. The amplitude analysis can be performed to
identify outlier channels meeting certain amplitude condi-
tions, on which additional similarity measurements can be
performed to identify a further subset of channels that may
have low channel integrity. Each of the identified low
integrity channels, based on the preprocessing, the spatial
similarity measurement and the amplitude analysis, can be
combined to create a list of bad channels. The identified bad
channels can be removed from further processing and signal
analysis, such as to provide input channel data that includes
the higher integrity channels.

As an example, the further processing and analysis can
include reconstructing signals on a body surface based upon
the input channel data (e.g., via an inverse solution). Addi-
tional calculations can be performed on the reconstructed
data, such as to generate one or more graphical maps and
characterize the reconstructed data. By removing such out-
lier channels from further processing, the approach can not
only achieve improved accuracy in such further processing
and analysis but also improves the system’s workflow, such
as by reducing preprocessing time.

Additionally, in some examples where a significant por-
tion of the channels have been identified as “bad channels”,
a graphical map can be generated to identify the area of low
resolution on a surface structure so that a user can determine
if the affected area resides within a region of interest. A user
can in turn select to continue in view of the identified low
resolution area or make additional adjustments with respect
to the sensing nodes that have been identified as “bad
channels”. A graphical user interface can also be provided to
allow a user to selectively include or exclude one or more
input channels from the analysis such as may be used to
manually override the automatic removal of the identified
bad channels.

FIG. 1 depicts an example of a channel integrity detection
system 10 that can be utilized to provide an indication of
channel integrity for a plurality of input channels. The
channel integrity system 10 can be implemented as hard-
ware, software (e.g., a non-transitory medium having
machine readable instructions) or a combination of hardware
and software. Signal information associated with each of the
plurality of input channels can be provided by input channel
data 12. The input channel data 12 can correspond to a
digital representation of the sensed analog signals, such as
electrophysiology information. In some examples, the input
channel data 12 can be provided by sensing electrodes that
are placed on a body surface of the patient, which can be an
internal body surface (e.g., invasive) or an external body
surface (e.g., non-invasive) or a combination thereof.

By way of example, the input channel data 12 can
represent signals acquired (e.g., in real time or previously)
from a plurality of body surface electrodes that are distrib-
uted across a patient’s body, such as the thorax. The elec-
trodes can be distributed evenly across the entire thorax, for
example. In other examples, the electrodes can be distrib-
uted across a selected surface area (e.g., a sensing zone),
such as corresponding to electrodes that are configured to
detect electrical signals corresponding to a predetermined
region of interest. In some examples, the input channel data
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4

12 can correspond to filtered input data, such as based on
line filtering and other signal processing (e.g., offset correc-
tion, analog-to-digital conversion and the like) to remove
selected noise components from the input signals of the
respective channels.

The channel integrity detection system 10 can include
preprocessing 14, such as can include one or more method
or function programmed to analyze the input channel data to
identify certain types of outlier channels. In some examples,
the preprocessing 14 can involve analysis of each channel
without consideration of its neighboring channels. As used
herein, the concept of neighbors, such a when referring to
neighboring channels or nodes, refers to the spatial proxim-
ity of sensing electrodes or nodes that detect the input
signals used to provide the input channel data 12. Thus, the
preprocessing 14 can relate to analysis of the input channel
data for each channel by itself.

As a further example, the preprocessing 14 can include
detecting disconnected channels, such as based on detecting
the voltage or current on the respective channels that can
identify the channel and its sensor as being disconnected or
non-operational. The preprocessing 14 can also include
detecting low amplitude signals that may have an amplitude
below a predetermined low voltage threshold. The prepro-
cessing 14 can also include evaluation of high amplitude
signals, such as within a predetermined range or exceeding
a high amplitude threshold. Each of the ranges and user
threshold associated with the preprocessing can correspond
to default values or can be user programmable, such as in
response to a user input.

A similarity measurement function 16 can be programmed
to compute a measure of similarity between input signals,
based on the input channel data 12, for each of the plurality
nodes relative to a set of its local neighboring nodes. Each
node’s neighbors nodes can be determined from node geom-
etry information, demonstrated in this example as node
distance 22. For example, the set of neighboring nodes for
a given node can include a first adjacent set of neighboring
nodes surrounding the given node. The similarity measure-
ment function 16 can thus identify channel integrity for a
spatially correlated set of channels. The set of channels and
their integrity can correspond to good channels or bad
channels or otherwise provide an identifier to distinguish
between good and bad channels based on the spatial simi-
larity measurement. In some examples, the similarity mea-
surement function can determine if any channels are low
correlated or uncorrelated channels and, based on such
determination, identify a set of low integrity channels.

An amplitude analyzer 18 can evaluate the amplitude of
each of the respective channels. Like the similarity mea-
surement function 16, the amplitude analyzer 18 can be
performed on a set of channels excluding those that have
been identified as low integrity channels by the preprocess-
ing 14. The amplitude analyzer 18 can determine a subset of
higher amplitude outlier channels based on a comparison of
channel amplitudes for at least a substantial portion of the
other nodes. For example, the amplitude analyzer 18 can
determine which node or nodes (if any) have an amplitude
greater than a statistically significant amplitude value
derived from evaluation of amplitudes for all relevant chan-
nels (e.g., one or more standard deviations from the mean
amplitude). The resulting subset of statistically high ampli-
tude channels identified by the analyzer 18 thus can be
further processed by similarity measurement function 20 to
compute a measure of similarity (e.g., a correlation) between
the input channel data 12 for each node of the subset and its
local neighboring nodes. Since if the high amplitude chan-



US 9,470,728 B2

5

nels might be determined to be good channels if they
correlate well with the other neighboring channels, they can
be considered temporary bad channels in this analysis. The
similarity measurement function 20 can identify which
statistically high amplitude channels exhibit a low correla-
tion relative to its neighbors and thus can be considered bad
channels. Alternatively or additionally, the similarity mea-
surement function 20 can identify which channels are high
integrity channels.

In some examples, the amplitude analyzer 18 and the
similarity measurement functions 16 and 20 can employ
node distance 22 to determine neighboring nodes for each of
the nodes being analyzed. Additionally, the inter-node dis-
tance can be used to further constrain the similarity mea-
surement functions 16 and 20. For example, if the node
distance exceeds a predetermined distance, which can be a
fixed value or be user programmable, such node can be
excluded from analysis as neighboring node even if it is an
actual spatial neighboring node. That is, the node distance 22
can constrain the measure of similarities to a spatial signifi-
cant set of one or more nodes for each node that is processed
by the amplitude analyzer 18 and the similarity measure-
ment functions 16 and 20.

The channel integrity detection system 10 can provide
output channel data 24 to identify a set of one or more nodes
having low integrity such that it should be excluded from
subsequent analysis. The output channel data 24 can be
provided in terms of a list of nodes indexed according to
input channel that can be provided to subsequent processing
blocks so that the corresponding data for a given channel is
not utilized in subsequent signal processing and data analy-
sis. As disclosed herein, the output channel data can be
provided in terms of channel integrity that is considered bad,
good, or can identify both bad and good channels. In some
examples, a logic value (e.g., 0 or 1) can be used to specify
if a channel is good or bad. In other examples, an integrity
value can be calculated to provide range of values repre-
senting the integrity of each channel, such that the degree of
goodness or badness can be characterized by the output
channel data. In an ideal situation, there would be no bad
channels and the input channel data 12 for all channels
would be utilized for further processing and analysis. In
practice, however, the channel integrity detection system 10
can identify low integrity channels that can be removed from
further processing and analysis as to improve the results.

FIG. 2 depicts an example of a channel integrity detection
system 50. In the example of FIG. 2, the channel integrity
detection system 50 is demonstrated in the context of body
surface electrical measurements that are represented by body
surface electrical data 52 acquired for a respective patient
over one or more time intervals. The body surface electrical
data 52, for example, can include measured electrical signals
(e.g., surface potentials) obtained from a plurality of sensing
electrodes distributed across the body surface of a patient.
Similar to other examples disclosed herein, the distribution
of electrodes can cover substantially the entire thorax of a
patient or the sensing electrodes can be distributed across a
predetermined section of the body surface such as config-
ured for detecting electrical signals predetermined as being
sufficient to detect electrical information corresponding to a
predetermined region of interest for the patient’s body. In
other For example, a set of electrodes can be preconfigured
to cover a selected region of the patient’s torso for moni-
toring atrial electrical activity of one or both atrium of a
patient’s heart, such as for studying atrial fibrillation. In
other examples other preconfigured sets of electrodes can be
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utilized according to application requirements, which can
include invasive and non-invasive measurements.

The body surface electrical data 52 can be stored in
memory of a computer. The body surface electrical data can
represent real time information that is streaming in from
sensing electrodes as data is acquired from a patient’s body
or it can be stored from a previous study. Regardless of the
temporal nature of the electrical data 52, the channel integ-
rity detection system can improve accuracy of its further
processing and analysis. Additionally, while the example of
FIG. 2 is described in the context of channel detection for
body surface electrical data, it is to be understood that the
channel integrity detection, as disclosed herein, is equally
applicable to other types of electrical signals including other
types of electrophysiological signals (e.g., electromyogra-
phy, electroencephalography, electrooculography, audiology
and the like) as well as non-physiological electrical signals
that may be monitored in a variety of other contexts.

An initial channel constraint 54 can be applied to the body
surface electrical data 52. The channel constraint 54, for
example can provide an index map that can be applied to the
body surface electrical data to identify and remove channels
that have been determined to be missing. For example, one
or more electrodes can be physically removed from the
sensing vest such that the information obtained by the
channel is not relevant to the subsequent processing and
analysis.

In another example where the body surface electrical data
is to be mapped via inverse reconstruction to an anatomic
envelope different from where the sensing has occurred,
node geometry data 56 can be acquired for the sensing
nodes. The node geometry data, for example, can identify
the location of the sensing nodes (corresponding to sensing
electrodes) in a respective correlated system. For example
the node geometry data 56 can include a list of nodes, and
neighbors for each node, such as can be produced by
segmenting imaging data that has been acquired by an
appropriate imaging modality. Examples of imaging modali-
ties include ultrasound, computed tomography (CT), 3D
Rotational angiography (3DRA), magnetic resonance imag-
ing (MRI), x-ray, positron emission tomography (PET),
fluoroscopy, and the like. Such imaging can be performed
separately (e.g., before or after the measurements) utilized to
generate the electrical data 52. Alternatively, imaging may
be performed concurrently with recording the electrical
activity that is utilized to generate the patient electrical data
14. The node geometry data 56 can also include coordinates
(e.g., in three-dimensional space) for each of the nodes.
Distances can be computed for neighboring nodes based on
the coordinates (e.g., according to a distance metric, such as
Euclidean distance). This can be stored in the node geometry
data or it can be computed from such information by the
system 50. In other examples, the node geometry data 56 can
be acquired by manual measurements between sensing
nodes or other means (e.g., a digitizer).

The channel constraint 54 thus can be programmed to
identify a given channel corresponding to a node that was
not appropriately segmented (e.g., no location in 3-D space
exists for the node). Thus missing channels and/or unseg-
mented channels can be flagged or otherwise removed from
the body surface electrical data 52. The channel constrained
data can then be provided by the channel constraint function
54 for further analysis.

A disconnected channel detector 58 thus can operate on
the constrained body surface electrical data (from channel
constraint function 54) to determine if any channels have
been disconnected from the substrate, such as the patient’s
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body from which the measurements have been acquired. As
an example, the disconnected channel detector 58 can be
configured to detect saturation of an input channel such as by
monitoring the value of the electrical signal. If the value of
the electrical signal for a channel exceeds a threshold value
(e.g., about + or -500 mV) or has a predetermined value
(e.g., 0 V) for a plurality of consecutive samples, the
corresponding channel can be determined to be discon-
nected. As an example, a measurement system (e.g., mea-
surement system 110 of FIG. 3) to which the input channel
signals are provided can be configured to saturate and obtain
apredetermined value (e.g., about + or =500 mV) for a given
channel if it loses contact with the body surface. In this way,
the disconnected channel detector 58 can determine a satu-
rated or disconnected channel which will be removed from
further processing.

A de-trend filter 60 can be applied to the remaining body
surface electrical data 52 (e.g., excluding bad channels that
have been identified by the channel constraint 54 or the
detector 58). The de-trend filter 60, for example, can be
configured to remove the mean value or linear trend from
each input channel (e.g., by FFT processing), which can
remove baseline drift or other trending offsets from each
respective channel. Such de-trending facilitates subsequent
processing, including calculation of amplitude values for
every signal channel. Additionally, by applying the de-trend
filter 60 on the data provided by the disconnected channel
detector 58 instead of before operation of the disconnected
channel detector, the detection of saturated and disconnected
channels is facilitated.

An amplitude calculator 62 is configured to compute a
peak-to-peak amplitude on the de-trended input channel data
for each of the channels. In the example where the body
surface electrical data corresponds to electrocardiographic
(ECG) data, the amplitude can be computed on de-trended
ECG data. The computed amplitude values can be stored in
memory with the body surface electrical data 52 associated
with each of the channels. For example, the data 52 can be
populated with an amplitude field according to the channel
index with which the data is stored in memory.

A low amplitude detection function 64 can be pro-
grammed to determine if the calculated amplitude for each
respective channel is below a predetermined low amplitude
threshold. Each channel identified as a bad channel already
(e.g., by channel constraint 54 and detector 58) can be
excluded from the low amplitude detection function 64. For
example the peak-to-peak amplitude of the signal for a given
channel is less than the low voltage threshold, the given
channels can be considered to be an extreme low amplitude
and can be removed from further analysis (e.g., a bad or low
integrity channel). The low amplitude threshold can be
programmable or it can be set to a predetermined default
value (e.g., about 1x107® mV).

A high amplitude detection function 66 can be pro-
grammed to detect channels having an amplitude that is
greater than a typical body surface electrical signal (e.g.,
greater than a typical ECG signal). The high amplitude
detection function 66 thus can be programmed to compare
the amplitude calculated (e.g., by amplitude calculator 62)
for each channel relative to a high amplitude threshold. If the
peak-to-peak amplitude of a given channel exceeds the high
amplitude threshold, the channel can be identified in the
electrical data 52 as a bad channel. The amplitude threshold
can be programmable in response to user input or it can be
set to a default value (e.g., about greater than 10 mV). The
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detection can be applied to each of the channels and the
results stored in memory such as part of the body surface
electrical data.

The system 50 can also include a node distance analyzer
68 that is programmed to quantify or characterize relative
distance between the sensing nodes that are distributed
across the body surface. For example, it has been determined
that if the distance between neighboring nodes exceeds a
certain distance, a comparison between neighboring chan-
nels may no longer be valid. As a result, the node distance
analyzer 68 can programmed to determine if the distance
between neighboring nodes exceeds distance threshold. The
distance threshold can be a default value or it can be
programmable to a desired value in response to a user input.
The node distance analyzer 68 can analyze the nodes based
on the node geometry data 56. As mentioned above, the node
geometry data 56 can be obtained by a segmentation process
performed on imaging data or other means.

The node distance analyzer 68 thus can be used to
constrain spatially comparative processing, as disclosed
herein, to include only those sensors and its neighbors that
are within a prescribed proximity of each other. As a result,
the likelihood of identifying a channel as a ‘bad channel’ can
be reduced when a morphological change is due to distance
between respective nodes instead of a spatial non-correlation
between the respective input signals of such nodes.

An identification of the set of nodes and neighboring
nodes that exceed the maximum node distance can be
provided as an input to a spatial correlation calculator 70 and
an amplitude analyzer 72. The spatial correlation calculator
70 can be programmed to calculate correlation coefficients
between the input signals for each node not already excluded
and its local neighboring nodes. The spatial correlation
calculator 70 thus computes correlation coefficients from a
cross correlation between a given central node and its local
neighboring nodes, as constrained by the maximum node
distance. The correlation coefficients between a central node
and its neighboring nodes can be combined and compared
relative to a correlation threshold (e.g., correlation cutoff
value) to determine whether the signals are spatially non-
correlated or uncorrelated. For example, the spatial corre-
lation calculator 70 can be configured to compute a cross
correlation between the central node and each of its neigh-
bors that yields a coefficient value, and a mean correlation
value can be computed for each node such as to provide a
single correlation value for each node. The minimum mean
correlation node can be removed from further analysis,
including that to be performed by the amplitude analyzer 72
and following correlation analysis. The spatial correlation
calculator 70 thus compares the correlation coefficients
relative to the correlation threshold (e.g., a correlation cutoff
value) and recalculates mean correlation values. The spatial
correlation calculator 70 can repeat this process can continue
until the minimum mean correlation value exceeds the
correlation cut off value. If any channel had only one
remaining neighbor for comparison, it can be not considered
to not be a low integrity channel by the spatial correlation
calculator 70.

The amplitude analyzer 72 is programmed to identify a
proper subset of channels having a peak-to-peak amplitude
greater than a statistically significant portion of the nodes.
For example, the amplitude analyzer 72 can perform a
histogram analysis of the peak-to-peak amplitude to detect
outliers among each of the remaining channels (e.g., chan-
nels not already identified as bad channels). Those channels
in the input data set provided to the amplitude analyzer that
exceed the high amplitude threshold can be provided to a
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spatial correlation calculator 74. The high amplitude thresh-
old can be determined from analysis of all the signal
channels, such as based on an amount of variation (e.g., a
percentage or a multiple of a standard deviation) greater than
mean amplitude of the signals.

The spatial correlation calculator 74 can perform the same
correlation as the spatial correlation calculation 70 or it can
be different. For example, the spatial correlation calculator
74 can compute correlation coeflicients based on performing
a cross correlation between the signals for each respective
node and its local set of neighboring nodes. As mentioned
above, nodes exceeding the maximum node distance are not
included in this analysis. Additionally, low amplitude chan-
nels and high amplitude channels as well as disconnected
and channels otherwise constrained are also not included in
the analysis performed by the spatial correlation calculator
74. As an example, the spatial correlation calculator 74 can
require a larger amount of correlation than that required by
the analysis implemented by the spatial correlation calcula-
tor 70 (e.g., the correlation threshold of calculator 70). That
is the cross correlation performed by the spatial correlation
calculator 74 can employ a more strict correlation threshold
than that employed by the spatial correlation calculator 70.

A channel aggregator 76 can be configured to combine the
list of bad channels detected by the analyzer components of
the channel integrity detection system 50, such as including
the channel constraint function 54, the disconnected channel
detector 58, the low amplitude detection function 64, the
high amplitude detection function 66, the spatial correlation
calculator 70 and the spatial correlation calculator 74. The
channel aggregator 76 in turn can provide a channel integrity
list that can be utilized to exclude such channels from
subsequent analysis. In other examples, the channel integrity
list 78 represent good channels on which subsequent analy-
sis is to be performed. In yet another example, the channel
integrity list could provide an indication of both good
channels and bad channels. In still another example, a
channel integrity list could provide a quantified value rep-
resenting a channel integrity for each of the respective nodes
based upon the analysis performed by the channel integrity
detection system 50. Regardless of the contents and type of
information in the channel integrity list, the information can
be stored in memory in conjunction with the body surface
electrical data 52 for further processing and analysis.

By way of further example, other inputs to and the
channel integrity detection system 50 can include variables
demonstrated in the following table. As disclosed herein
some of the variables can be set to default values or be user
programmable. The outputs from the integrity detection
system 50 can include variables representing a bad (and/or
good) channel list. A list of saturated or disconnected
channels can also be provided.

Variable Name Description

triangles triangular mesh node connection list (part
of the geometry data 56)

vertices X, ¥, z coordinates of each node point (part
of or determined from geometry data 56)

dataOrig channel input data (electrical data 52)

ccCutOff Correlation coefficient maximum value for

bad channels (used by correlation
calculator 70)

Amplitude standard deviation multiplier
(used by amplitude analyzer 72)
Maximum node distance (used by node
distance analyzer 68)

ampCutoffSDMultiplier

maxNodeDistValue
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-continued

Variable Name Description

badChannelZero Previously detected bad channels -
saturated (provided by channel constraint
54)

channel indices which references non
missing channels

Maximum node distance standard
deviation multiplier (used by amplitude
analyzer 72)

Amplitude correlation coefficient maximum
value for bad channels (used by
correlation calculator 74)

channelIndices

maxNodeDistMultiplier

ccCutoffAmplitude

FIG. 3 depicts an example of a system 100 that can be
utilized for acquiring electrical activity sensed from a patient
108 and for analyzing the sensed electrical activity. In some
examples, the sensed electrical activity can be used to
generate one or more graphical representations (e.g., graphi-
cal maps of electroanatomic activity) based on the sensed
electrical activity, such as for a region of patient anatomy.
The system 100 can include an analysis system 102 that
employs a channel integrity detection 104 as disclosed
herein.

The analysis system 102 can be implemented as including
a computer, such as a laptop computer, a desktop computer,
a server, a tablet computer, a workstation or the like. The
analysis system 102 can include memory 106 for storing
data and machine-readable instructions. The memory 106
can be implemented, for example, as a non-transitory com-
puter storage medium, such as volatile memory (e.g., ran-
dom access memory), non-volatile memory (e.g., a hard disk
drive, a solid-state drive, flash memory or the like) or a
combination thereof.

The analysis system 102 can also include a processing
unit 108 to access the memory 106 and execute the machine-
readable instructions stored in the memory. The processing
unit 108 could be implemented, for example, as one or more
processor cores. In the present examples, although the
components of the analysis system 102 are illustrated as
being implemented on the same system, in other examples,
the different components could be distributed across differ-
ent systems and communicate, for example, over a network.

The system 100 can include a measurement system 110 to
acquire electrophysiology information for a patient 112. In
the example of FIG. 3, a sensor array 114 includes one or
more electrodes that can be utilized for recording patient
electrical activity. As one example, the sensor array 114 can
correspond to an arrangement of body surface electrodes
that are distributed over and around the patient’s thorax for
measuring electrical activity associated with the patient’s
heart (e.g., as part of an ECM procedure). In some examples,
there can be about 200 or more sensors (e.g., about 252
sensors) in the array 114, each sensor corresponding to a
node that defines a respective channel. An example of a
non-invasive sensor array that can be used is shown and
described in International application No. PCT/US2009/
063803, which was filed 10 Nov. 2009, and is incorporated
herein by reference. This non-invasive sensor array corre-
sponds to one example of a full complement of sensors that
can include one or more sensing zones. As another example,
the sensor array 108 can include an application-specific
arrangement of electrodes corresponding to a single sensing
zone or multiple discrete sensing zones, such as disclosed in
International application No. PCT/US2012/059957, which
was filed 12 Oct. 2012, and is incorporated herein by
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reference. Additionally or alternatively, the sensor array 114
can include invasive sensors that can be inserted into the
patient’s body.

The measurement system 110 receives sensed electrical
signals from the corresponding sensor array 108. The mea-
surement system 110 can include appropriate controls and
signal processing circuitry (e.g., filters and safety circuitry)
for providing corresponding electrical measurement data
118 that describes electrical activity for each of a plurality of
input channels detected by the sensors in the sensor array
114.

The measurement data 118 can be stored in the memory
106 as analog or digital information. Appropriate time
stamps and channel identifiers can be utilized for indexing
the respective measurement data 118 to facilitate the evalu-
ation and analysis thereof. As an example, each of the
sensors in the sensor array 114 can simultaneously sense
body surface electrical activity and provide corresponding
measurement data 118 for one or more user selected time
intervals.

The analysis system 102 is configured to process the
electrical measurement data 118 and to generate one or more
outputs. The output can be stored in the memory 106 and
provided to a display 120 or other type of output device. As
disclosed herein, the type of output and information pre-
sented can vary depending on, for example, application
requirements of the user.

As mentioned, the analysis system 102 is programmed to
employ channel integrity detection methods 104 to improve
the accuracy in processing and analysis performed by the
analysis system. The channel integrity detection 104 can, for
example, be implemented to perform any combination of the
channel integrity detection functions and methods disclosed
herein (see, e.g., FIGS. 1 and 2 and the corresponding
description). The channel integrity detection 104 thus can
compute an indication of which input channels are bad (or
good) based on signal processing on the measurement data
118. The resulting channel integrity data provided by the
detection methods 104 can be stored in the memory 106,
such as in conjunction with the measurement data 118. In
this way, bad channels can be removed automatically or
selectively for further processing and analysis.

In some examples, the channel integrity detection 104 can
interface with a graphical user interface (GUI) 122 stored as
executable instructions in the memory 106. The GUI 122
thus can provide an interactive user interface, such that the
thresholds and related parameters utilized by the channel
integrity detection 104 can be set in response to a user input
124. The GUI 122 can provide data that can be rendered as
interactive graphics on the display 120. For example, the
GUI 122 can generate an interactive graphical representation
that differentiates between good and bad channels (e.g., a
graphical representation of the sensor array 114 differenti-
ating graphically or otherwise between bad and good chan-
nels).

In the example of FIG. 3, the GUI includes a parameter
selector 126 that can be employed to program channel
integrity parameters (e.g., thresholds and constraints) imple-
mented by the channel integrity detection 104. In some
examples, default values can be utilized unless modified in
response to a user input, such as disclosed herein.

The GUI 122 can also include a channel selector 128
programmed to select and deselect channels in response to
a user input. The channel selector 128 can be employed to
manually include or exclude selected channels. For instance,
the GUI 122 can indicate (e.g., by graphical and/or textual
indicators) on the display 120 which channels are missing
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channels to be excluded, a suggested set of channels that are
to be excluded but can be editable via the GUI, and a set of
channels considered to be high integrity (e.g., good) chan-
nels and are also editable via the GUI. A user can thus
employ the channel selector 128 of the GUI 122 to include
a bad channel that has been identified for removal or exclude
a good channel that is identified for inclusion.

As a further example, the analysis system 102 can include
a mapping system 130 that is programmed to generate
electroanatomical map based on the measurement data 118,
namely based on the measurement data for the channels
determined to have a sufficient integrity (i.e., excluding bad
channels). The mapping system 130 can include a map
generator 132 that is programmed to generate map data
representing a graphical (e.g., an electrical or electroana-
tomic map) based on the measurement data 118. The map
generator 132 can generate the map data to visualize such
map via the display 120 spatially superimposed on a graphi-
cal representation of an anatomical structure (e.g., the heart).

In some examples, the mapping system 130 includes a
reconstruction component 134 programmed to reconstruct
heart electrical activity by combining the measurement data
118 with geometry data 136 through an inverse calculation.
The inverse calculation employs a transformation matrix and
to reconstructs the electrical activity sensed by the sensor
array 114 on the patient’s body onto an anatomic envelope,
such as an epicardial surface, an endocardial surface or other
envelope. Examples of inverse algorithms that can be imple-
mented by the reconstruction component 134 are disclosed
in U.S. Pat. Nos. 7,983,743 and 6,772,004.

The reconstruction component 134, for example, com-
putes coefficients for a transfer matrix to determine heart
electrical activity on a cardiac envelope based on the body
surface electrical activity represented by the electrical mea-
surement data 118. Since the reconstruction onto the enve-
lope can be sensitive to ingress and other noise on the
respective input channels, the channel integrity detection
104 helps to remove data for channels that would likely
adversely affect the process. Additionally, the reconstruction
component 134 can utilize interpolated measurement data
computed for the identified bad channels. Such interpolation
for a given channel can be calculated based on signal values
determined from its neighboring nodes, for example. The
possible effect of such interpolation on the resolution pro-
vided in a graphical electroanatomic map can vary depend-
ing on the quantity and spatial distribution of bad channels,
as disclosed herein.

The map generator 132 can employ the reconstructed
electrical data computed via the inverse method to produce
corresponding map of electrical activity. The map can rep-
resent electrical activity of the patient’s heart on the display
120, such as corresponding to a map of reconstructed
electrograms (e.g., a potential map). Alternatively or addi-
tionally, an analysis system 102 can compute other electrical
characteristics from the reconstructed electrograms, such as
an activation map, a repolarization map, a propagation map
or other electrical characteristic that can be computed from
the measurement data. The type of map can be set in
response to the user input 124 via the GUI 122.

By way of further example, the patient geometry data 136
can be acquired using nearly any imaging modality (e.g.,
x-ray, computed tomography, magnetic resonance imaging,
ultrasound or the like) based on which a corresponding
representation can be constructed, such as described herein.
Such imaging may be performed concurrently with record-
ing the electrical activity that is utilized to generate the
measurement data 118 or the imaging can be performed
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separately. As another example, the geometry data 136 can
correspond to a mathematical model of a torso that has been
constructed based on image data for the patient’s organ. A
generic model can also be utilized to provide the geometry
data 136. The generic model further may be customized
(e.g., deformed) for a given patient, such as based on patient
characteristics include size image data, health conditions or
the like. Appropriate anatomical or other landmarks, includ-
ing locations for the electrodes in the sensor array 108 can
also be represented in the geometry data 116, such as by
performing segmentation of the imaging data. The identifi-
cation of such landmarks can be done manually (e.g., by a
person via image editing software) or automatically (e.g.,
via image processing techniques).

The analysis system 102 can also include a resolution
analysis function 138 to determine the impact on resolution
of analysis performed by the mapping system 130 based on
the identified bad channels. As an example, the resolution
analysis function 138 can include a resolution calculator 140
programmed to compute resolution for data that is recon-
structed onto a prescribed surface (e.g., by the reconstruction
component). As mentioned, the surface can include a surface
envelope such as can include an anatomical surface, a
surface of a model or a combination of a model and
anatomical structure onto which electrical data is to be
reconstructed, as represented by the geometry data 136. In
some examples, the surface can include an epicardial surface
or an endocardial surface of a patient’s heart, and further
may include an entire surface or a selected region of interest.

A resolution evaluator 142 can analyze the computed
resolution over the surface, such as by comparing the
computed resolution relative to a threshold. The threshold
can be utilized to determine an area of low resolution that
would be adversely affected by the identified bad channels.
The area of low resolution, for example, can be provided to
the map generator 132 and, in turn, be utilized to construct
a graphical map that can be graphically presented to a user
on the display 120. The user further can be provided an
opportunity to select to continue or make other adjustments
to the sensor array 114 in an effort to improve the channel
integrity. In other examples, a user can select to proceed with
analysis with the understanding that certain areas of the
reconstructed data may occupy areas of low resolution and
thus could contain associated inaccuracies. Such inaccura-
cies, however, may be insignificant when a desired region of
interest resides outside the area of low resolution.

FIG. 4 depicts an example of a GUI 200 that includes a
first display portion 202 that includes a graphical depiction
of a sensor array illustrates sensing nodes. Another portion
of the GUI 200 includes a display portion 204 representing
a set of electrical signals 206. The GUI 200 can correspond
to the GUI 122 of FIG. 3, for example. The electrical signals
206 demonstrated in FIG. 4 include signals for a selected set
of channels 208 identified as channels 29, 54, 55 and 59 of
the set of channels. The peak-to-peak amplitude of the
channel 54 is approximately 13 mV. The peak-to-peak
amplitude of the third channel 55 is approximately 30 mV.
The first channel has an approximate peak-to-peak ampli-
tude of about 30 mV. Each of the channels 54, 55 and 59 are
examples of high amplitude channels that would be detected
by the high amplitude detection function of the channel
integrity detection method as disclosed herein.

FIG. 5 depicts an example of the GUI 200 from FIG. 4
demonstrating signals 210 for a different selected set of
channels 43, 44, 45, 48 and 49, demonstrated at 212. Based
on the spatial measurement functions disclosed herein, it can
be determined that each of the channels 43, 44, 45, 48, and
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49 exhibits similar morphology, and thus would be spatially
well correlated. However, the signal for channel 44 has a
morphology not similar to its respective neighboring chan-
nels, and thus can be computed by the channel integrity
detection method as a low integrity or bad channel.

As an example, body surface electrophysiological chan-
nels are related spatially by the connections formed between
each sensing node and its corresponding surrounding nodes.
As shown in the example of FIGS. 6 and 7, the spatial
relationship between nodes can be represented by a trian-
gular mesh.

As a further example, geometry data (e.g., data 56 of FIG.
2 and data 136 of FIG. 3) for a segmented image set for a
patient while a sensor array of electrodes is positioned on the
patient body can provide data representing each node’s
spatial location (e.g., an X, y, z coordinate position). The
geometry data can also provide a corresponding triangular
mesh connection (e.g., node number triplets for the forma-
tion of each mesh triangle) for each node. For example, in
FIG. 7, the nodes 220, 222, and 224 (highlighted) were
connected by a corresponding triangulation triplet. The
triangular connections across the body surface form a tri-
angular mesh which can be used to provide the body surface
information for subsequent processing, such as for inverse
problem calculations, as disclosed herein.

Each node point on the torso thus is connected by the
triangular mesh to one or more neighboring node points.
These surrounding nodes are considered the node’s “neigh-
bors”. An example center node 230 and its local neighboring
nodes 232, 234, 236, 238 and 240 are shown in FIGS. 8A
and 8B. In one example of comparative calculations (e.g., by
the similarity measurement 16, amplitude analyzer 18 and
similarity measurement 20 of FIG. 1), the center node (e.g.,
node of interest) 230 is only compared relative to its adjacent
neighboring nodes. In addition to the calculating the neigh-
boring nodes, the node distances between each node and its
specific neighbors are calculated (e.g., by the node distance
function 22 of FIG. 1 or node distance analyzer 68 of FIG.
2). As disclosed herein, the node distances can be used to
discriminate poor node comparisons based on distance.
While this example includes only an immediately adjacent
set of neighboring nodes 232, 234, 236, 238 and 240 as
neighbors (e.g., which form a neighborhood of nodes), other
degrees of proximity can be utilized in other examples.
Additionally, the distance between each center node and its
neighboring nodes can be utilized to provide a weighting
applied to each correlation between the neighboring nodes.
As a result, a more accurate correlation that varies as a
function of distance can be utilized in the correlation
between neighboring channels.

FIGS. 9 and 10 demonstrate examples of a GUI 300, such
as can correspond to the GUI 122 of FIG. 3. In the example
of FIG. 9, the GUI 300 includes a plurality of display areas,
at least some or all of which can include interactive GUI
elements that can activate functions or methods in response
to a user input. For example, an interactive electrode display
area 302 includes a graphical representation of sensing
nodes (e.g., electrodes of a sensor array), such as can
correspond to electrodes distributed on a patient’s body as
disclosed herein. A scale is provided to inform the user of
different levels of channel integrity, such as can include
‘Good’ channels, bad channels, bad but editable channels
and missing channels. For example, the scale can utilize
different colors, graphical indicia, text or any combination
thereof to differentiate channel integrity that has been deter-
mined for each such channel, such as shown in FIG. 9. In
this example one of the nodes 304 has been selected and its
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corresponding signal is presented in display area 306. Any
number of one or more nodes can be selected to provide its
signal in the display area 306. An adjacent display area 308
includes waveforms for each of the electrodes that have not
been removed by the channel integrity detection or that has
been removed (e.g., an editable channel) but has been
reactivated by the user.

Also demonstrated in FIG. 9 is a graphical map 310. In
this example, the graphical map 310 includes a graphical
representation (e.g., via color coding) of one or more areas
of low resolution, demonstrated at 312. The area of low
resolution, for example, can be determined by a resolution
analysis method (e.g., resolution analysis method 138 of
FIG. 3) in conjunction with reconstruction of the sensed
signals to a surface (e.g., the cardiac surface). Thus, the
graphical map 310 can display the effect that the identified
bad channels will have on the overall resolution of inverse
calculations. In this example, the area of low resolution is
the result of several bad channels, highlighted at 314, near
the low edge of each panel of the array of electrodes. A user
thus has an opportunity to cancel the process and adjust the
sensing electrodes or the user can select to continue (e.g., via
GUI elements 316) the process.

The GUI 300 also includes GUI elements 318 that can be
utilized to select what type of map will be generated (e.g.,
by map generator 132 of FIG. 3) and presented in the map
310 in response to a user input. Examples of maps that can
be created can include a potential map, an activation map, a
voltage map, a slew rate map and a propagation map. Other
maps could also be generated.

FIG. 10 depicts another example of the GUI 300 in which
the same reference characters refer to the same parts intro-
duced with respect to FIG. 9. In the example of FIG. 10, a
given node 320 has been selected in response to a user input.
The corresponding waveform is presented in the display area
306. The resulting mapped electrode following reconstruc-
tion for each of the good electrodes is demonstrated in
display area 308. Additionally, since the selected node in this
example has been determined (e.g., by channel integrity
detection method 104 of FIG. 3) to be a good channel, its
reconstructed waveform is highlighted (e.g., graphically
differentiated) from the other reconstructed waveforms in
the display area 308, as shown at 322. Similar to FIG. 9, the
map 310 includes areas of low resolution 312 resulting from
the impact of channels that have been determined to be bad
channels (e.g., by channel integrity detection method 104 of
FIG. 3).

In view of the foregoing, an automatic bad channel
detection method has been disclosed to improve accuracy
and user experience. The approach disclosed herein thus can
enhance the user interaction and increase the ease of beat-
by-beat analysis. The bad channel detection methods and
systems can be implemented to identify and remove high
amplitude and low spatially correlated signal channels. The
remaining channels can be utilized to reconstruct electrical
activity on a surface envelope (e.g., epicardial or endocardial
electro grams) via potential-based inverse electrocardiogra-
phy algorithms.

As will be appreciated by those skilled in the art, portions
of the invention may be embodied as a method, data
processing system, or computer program product. Accord-
ingly, these portions of the present invention may take the
form of an entirely hardware embodiment, an entirely soft-
ware embodiment, or an embodiment combining software
and hardware. Furthermore, portions of the invention may
be a computer program product on a computer-usable stor-
age medium having computer readable program code on the
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medium. Any suitable computer-readable medium may be
utilized including, but not limited to, static and dynamic
storage devices, hard disks, optical storage devices, and
magnetic storage devices.

Certain embodiments of the invention are described
herein with reference to flowchart illustrations of methods,
systems, and computer program products. It will be under-
stood that blocks of the illustrations, and combinations of
blocks in the illustrations, can be implemented by computer-
executable instructions. These computer-executable instruc-
tions may be provided to one or more processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus (or a combination of
devices and circuits) to produce a machine, such that the
instructions, which execute via the processor, implement the
functions specified in the block or blocks.

These computer-executable instructions may also be
stored in computer-readable memory that can direct a com-
puter or other programmable data processing apparatus to
function in a particular manner, such that the instructions
stored in the computer-readable memory result in an article
of manufacture including instructions which implement the
function specified in the flowchart block or blocks. The
computer program instructions may also be loaded onto a
computer or other programmable data processing apparatus
to cause a series of operational steps to be performed on the
computer or other programmable apparatus to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide steps for implementing the functions
specified in the flowchart block or blocks.

What have been described above are examples. It is, of
course, not possible to describe every conceivable combi-
nation of components or methodologies, but one of ordinary
skill in the art will recognize that many further combinations
and permutations are possible. Accordingly, the disclosure is
intended to embrace all such alterations, modifications, and
variations that fall within the scope of this application,
including the appended claims.

As used herein, the term “includes” means includes but
not limited to, the term “including” means including but not
limited to. The term “based on” means based at least in part
on. Additionally, where the disclosure or claims recite “a,”
“an,” “a first,” or “another” element, or the equivalent
thereof, it should be interpreted to include one or more than
one such element, neither requiring nor excluding two or
more such elements.

What is claimed is:

1. A non-transitory computer readable medium having
instructions, the instructions comprising:

a preprocessing stage to analyze input channel data for a
plurality of input channels to detect channels having an
integrity that is considered one of bad or good, each of
the plurality of input channels corresponding to a
respective one of a plurality of nodes;

a first spatial similarity measurement function to compute
a measure of similarity between the input channel data
for each of the plurality of nodes and a set of neigh-
boring nodes to identify a spatial correlated set of
channels having an integrity that is considered one of
bad or good;

an amplitude analyzer to determine a subset of channels
meeting amplitude criteria;

a second spatial similarity measurement function to com-
pute, for each channel in the subset of channels meeting
the amplitude criteria, a measure of similarity between
the input channel data for each node and a set of
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neighboring nodes to identify an amplitude correlated
set of channels having an integrity that is considered
one of bad or good; and

a combiner to store output data representing the integrity

of the plurality of input channels based on the integrity
of the channels detected by the preprocessing stage, the
spatial correlated set of channels and the amplitude
correlated set of channels.

2. The medium of claim 1, wherein the amplitude analyzer
is further programmed to compare an amplitude value for
each node relative the amplitude values for at least a
substantial portion of the other nodes to determine tempo-
rary bad channels, which defines the subset of channels
meeting the amplitude criteria.

3. The medium of claim 2, wherein the second spatial
similarity measurement function comprises a correlation
calculator programmed to compute a cross correlation
between the input channel data for each node, corresponding
to the temporary bad channels, and the set of neighboring
nodes.

4. The medium of claim 2, further comprising an ampli-
tude calculator to compute the amplitude values for each of
the plurality of nodes based on the input channel data for
each respective node.

5. The medium of claim 4, wherein the second spatial
similarity measurement function comprises a correlation
calculator programmed to compute a correlation coeflicient
value between the computed amplitude value of each of the
temporary bad channels and its local neighboring nodes, the
amplitude correlated set of channels being determined based
on a comparison of the correlation coefficient value com-
puted for each node relative to a threshold value.

6. The medium of claim 5, wherein the threshold value is
one of programmable in response to a user input or a
predetermined default value.

7. The medium of claim 1, wherein the first spatial
similarity measurement function comprises a correlation
calculator programmed to compute correlation coeflicient
values from a cross correlation computed between each of
the plurality of nodes and its local neighboring nodes, the
spatial correlated set of channels being determined based on
a comparison of the correlation coefficient value for each
node relative to a threshold value.

8. The medium of claim 7, wherein the threshold value is
one of programmable in response to a user input or a
predetermined default value.

9. The medium of claim 1, further comprising a node
distance analyzer to compute distance between nodes, each
set of neighboring nodes being determined based on the
distance between nodes.

10. The medium of claim 9, wherein node distance is
computed based on locations of nodes determined from
geometry data that represents locations for the plurality of
nodes.

11. The medium of claim 10, wherein the geometry data
is computed from imaging data for a plurality of sensors
corresponding to the nodes.

12. The medium of claim 11, further comprising a de-
trend filter applied to the input data to provide de-trended
input data, each of the first and second spatial correlation
functions being performed on the de-trended input data.

13. The medium of claim 1, wherein the preprocessing
stage further comprises a saturated channel detector pro-
grammed to identify a disconnected condition of a sensor
based on the input data prior to de-trending, the output data
including channels identified by the saturated channel detec-
tor.
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14. The medium of claim 1, wherein the preprocessing
stage further comprises a low amplitude detector pro-
grammed to identify each channel having an amplitude
value that resides below a low amplitude threshold, the
output data including channels identified by the low ampli-
tude detector.

15. The medium of claim 1, wherein the preprocessing
stage further comprises a high amplitude detector pro-
grammed to identify each channel having an amplitude
value that resides above a high amplitude threshold, the
output data including channels identified by the high ampli-
tude detector.

16. The medium of claim 1, further comprising:

a resolution calculator to compute coefficients of a trans-
formation matrix for at least a substantially portion of
plurality of input channels based on the data represent-
ing the integrity of plurality of input channels; and

an evaluator to identify a low resolution spatial region
based on an evaluation of the coefficients of the trans-
formation matrix.

17. The medium of claim 16, further comprising gener-
ating a graphical map depicting the low resolution spatial
region.

18. The medium of claim 1, further comprising a mapping
system programmed to generate a reconstructed set of
signals on an envelope based on input channel data and the
output data, such that an interpolated value is used for each
bad channel.

19. One or more non-transitory computer readable media
that, when executed by one or more processors, perform a
method comprising:

determining an amplitude for each of a plurality of input
channels, corresponding to respective nodes;

computing a measure of similarity between the input
channel of each node and the input channel of its
neighboring nodes;

comparing the amplitude for each node relative to other
nodes to determine temporary bad channels;

for each of the temporary bad channels, computing a
measure of similarity between the input channel of each
node and the input channel of its neighboring nodes;

identifying channel integrity for each of the plurality of
input channels based on the computed measures of
similarity; and

storing data associated with the identified channel integ-
rity for each of the plurality of input channels in a
memory.

20. The non-transitory computer readable media of claim
19, further comprising determining a disconnected condition
of'a sensor for a given input channel to identify at least one
bad channel.

21. The non-transitory computer readable media of claim
19, further comprising comparing the amplitude of each
input channel relative to a low amplitude threshold to
identify at least one bad channel.

22. The non-transitory computer readable media of claim
19, further comprising comparing the amplitude of each
input channel relative to a high amplitude threshold to
identify at least one bad channel.

23. The non-transitory computer readable media of claim
19, wherein the measure of similarity computed for each of
the temporary bad channels further comprises:

computing a correlation coefficient value between the
computed amplitude value of each of the temporary bad
channels and its neighboring nodes; and

comparing the correlation coefficient value computed for
each node relative to a threshold value.
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24. The non-transitory computer readable media of claim
23, wherein the threshold value is a first threshold value and
wherein the measure of similarity computed for each of the
input channels further comprises:

computing a correlation coefficient value between the

computed amplitude value of each of the temporary bad
channels and its neighboring nodes; and

comparing the correlation coeflicient value computed for

each node relative to a second threshold value.

25. The non-transitory computer readable media of claim
24, wherein the first threshold value is greater than the
second threshold value such that the measure of similarity
computed for each of the temporary bad channels is more
strict.

26. The non-transitory computer readable media of claim
19, further comprising computing a distance between nodes,
the neighboring nodes for each respective node being deter-
mined based on the computed distance.

27. The non-transitory computer readable media of claim
26, wherein node distance is computed based on locations of
nodes determined from geometry data that represents loca-
tions for the plurality of nodes.

28. The non-transitory computer readable media of claim
19, further comprising:

computing a resolution of reconstructed signals based on

the plurality of input channels; and

comparing the computed resolution relative to a threshold

to identify at least one region of low resolution result-
ing from the identified bad channels.
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29. One or more non-transitory computer readable media
that, when executed by one or more processors, perform a
method comprising:
determining an amplitude for each of a plurality of input
channels, corresponding to respective nodes;

computing a measure of similarity between the input
channel of each node and the input channel of its
neighboring nodes;

comparing the amplitude for each node relative to other

nodes to determine temporary bad channels;
for each of the temporary bad channels, computing a
measure of similarity between the input channel of each
node and the input channel of its neighboring nodes;

identifying channel integrity for each of the plurality of
input channels based on the computed measures of
similarity; and

computing a resolution of reconstructed signals based on

the plurality of input channels;

identifying at least one region of low resolution resulting

based on the computed resolution; and

generating a display of a graphical map representing the

region of low resolution.

30. The non-transitory computer readable media of claim
19, further comprising generating a reconstructed set of
signals using an inverse method based on the plurality of
input channels, in which the identified bad channels are
excluded from the generating and an interpolated channel
value is used in place each identified bad channel.
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